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Higher Order Mode Cutoff in Polygonal
Transmission Lines
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Abstract — This paper provides an analytical solution to the problem of
determining the cutoff wavelength of the first higher order mode in any
transmission line having as its conductors a pair of coaxial, similar,
similarly oriented regular polygons. The method is based on the cross-sec-
tional resonance technique. It is shown that, under certain circumstances,
the requirement that the polygons be coaxial can be relaxed and a solution
still obtained in this way.

I. INTRODUCTION

In a recent paper, Gruner [1] has given the results of a
numerical solution to the problem of determining cutoff wave-
lengths of the higher order modes in a square coaxial line. Gruner
gives data for the first several higher order modes in graphical
form.

From an engineering point of view, interest lies almost solely in
ensuring that operation of the line is monomodal, i.e., only the
dominant TEM mode propagates. Clearly then, most concern lies
with determining the cutoff wavelength of the first higher order
mode. Modes higher than this will generally be of little more than
academic interest.

This note shows that cutoff of this mode can be determined by
the cross-sectional resonance technique [2, p. 227]. The solution is
analytic, except that the transcendental equation which finally
determines the cutoff wavelength is best solved numerically. In
the latter stages of deriving this equation, some approximation is
involved but this is scarcely any disadvantage as extremely pre-
cise knowledge of the cutoff wavelength is not necessary if the
aim is really with an adequate margin of safety to avoid the onset
of higher order modes.

It will emerge that this technique is quite general. It is applica-
ble to any transmission line made up of a pair of conductors
which are coaxial, similar, similarly oriented regular polygons, of
which a square coaxial line is but a special case. How the method
might be used in yet more general cases will also be indicated.

II. THEORETICAL DEVELOPMENT

Consider the transmission line shown in cross section in Fig. 1.
Although the figure shows a square coaxial line, the method
applies to any line consisting of a pair of coaxial, similar,
similarly oriented regular polygons.

To determine the cutoff wavelength of the first higher order
mode, we need to know the conditions under which the cross
section will go into resonance. We can regard the structure as a
cascade of parallel-plate transmission lines joined by mitred
bends and bent around to close on itself. Resonance can be
determined by choosing a reference plane anywhere in one of the
parallel-plate lines (or along the bisector of a bend), but the
procedure is simplest if we choose the reference plane in one of
the lines at its intersection with one of the principal axes of
cross-sectional symmetry, such as AA in Fig. 1.
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Coaxial transmission line of a square cross section. At resonance,
admittance 1s zero at reference plane AA. :
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Fig. 2. Equivalent circuit for transmission around the structure of Fig. 1.

Consider unit axial length of the line. The condition for
resonance is that the admittance presented at AA should be zero.
Fig. 2 shows an equivalent circuit representation for the system,
the “black box” representing the entire cascade of lines and
bends. Using a transmission (ABCD) matrix representation [2, p.
85] of the cascade, it is easy to show that resonance corresponds
to

A+D=2. 1)

Since AA is chosen to be on one of the axes of symmetry, 4= D
and (1) simplifies to

A=1.

(2

For n-sided polygons, the black box consists of a cascade of n
identical subnetworks, each containing one corner. Fig. 3(a)
shows one of these subnetworks for the case of a square coaxial
line. It consists of two parallel-plate lines of length a /2 joined by
a corner region. In any other case, the network will be similar
except that the angle of the mitre will no longer be #/2 but
27/ n. The transmission matrix [T'] of the cascade will be

[(1T]1=[:]"

n-(2 2 @

is the transmission matrix of one of the subnetworks. It is easily
shown, e.g., by the Cayley—Hamilton theorem [3, p. 1097], that

A=cos{n(cos"'a)} (5)

(3)

where
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Fig. 3. (a) One of the n bends which constitute the structure of Fig. 1. (b)

One of the two halves of the bend.

and so the condition for cross-sectional resonance is that

29
a=cos—.
n

(6)

Moreover, as Fig. 3 shows, each of these subnetworks is
symmetrical about the bisector of the mitre. It is a cascade of two
identical, asymmetric networks connected back-to-back and it is
simple to show that

a=2af -1 (7)

g is the transmission matrix of the network

shown in Fig. 3(b), a section of transmission line followed by a
half corner. Combining (6) and (7) then allows us to deduce that
the condition for resonance must be

where ['r]=(a

(®)

Equation (8) is accurate, but to proceed further requires ap-
proximation. We will assume that if the bend region is suffi-
ciently small—exactly what this means is a question that can be
deferred temporarily—it can be replaced by a II network of
series inductance and shunt capacity, i.e., we are assuming that
Fig. 3(b) can be represented circuitally by the equivalent network
shown in Fig. 4. L is the total inductance of the complete corner
region and C is the capacitance.

The transmission matrix [7] for this cascade is easily found by
multiplication of the transmission matrices of each subnetwork in
the cascade. When the result is inserted into (8), the condition for
cross-sectional resonance becomes

2 T
ap =Cos™ —.
B n

20( 1 ¢
cos” (1 ZOCw tan 2)

_1 _1Le 9| 2T _
{(1 4LCw) 3 Z tanz} cos®— =0 )

where C(L) is the total capacitance (inductance) attributable to
the mitre region,

27a
¢ - }\ ’
®w =2xf,

f is the frequency, and
A is the wavelength corresponding to f.

The solution of (9) gives the condition for the first higher order
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Fig. 4. Equivalent circuit for Fig. 3(b).

mode cutoff. All that is required to solve this equation are values
for the parameters Z,, L, and C.

Analytic expressions from which they can be obtained are
given in the Waveguide Handbook [4]. The normalized suscep-
tances of the series and shunt elements of the II equivalent
circuit of an E-plane bend in a parallel-plate line will be the same
as those for an E-plane bend in a rectangular waveguide [2, p.
347-348], i.e. results for Z,Cw and Z,/Lw are directly avail-
able.

To apply this data to this problem, it is useful to rework it in
terms of the mean line circumference

+
C, = na+b) (10)
2
and the flat width ratio
b
§ = Z . (11)

After some amount of not very interesting geometry, we obtain

4s-1Z,

ZyCw = (12)
nZA(s+1)tan%
Lo 27(s—1)
= 1
Zo " nA(s11) (13)

where A =) /C,, is the normalized wavelength, and

AT

When these results are substituted into (9), we obtain an
equation for the normalized cutoff wavelength as a function of s
with n as a parameter as follows:

2 27r 2(S“1)2n 27
08 - o tan
n(s+1)A, n?A (s +1) tan Z n(s+1A,
n
- 2r(s-1)°S, a(s—1) 27

n3A2C(s+1)2ta.n ~nA (s +1) n(s+1)Ac
T

—cos® - =0. (14)

Obviously, this is best solved numerically. Examination of this
equation shows that 2/(s +1)< A_<1, ie, the cutoff wave-
length is always less than the mean cucumference except for the
trivial case s =1, where they are equal.

One is entitled to ask, of course, the conditions under which
the approximations involved in deriving (14) will be fulfilled.
There are two conditions.
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Fig. 5. Normalized cutoff wavelength as function of flat-width ratio. Slashes
indicate maximum values of 2 for which theory is expected to be valid.
Curve n = oo is circular case. Crosses are Gruner’s results [1] for n = 4.

The first requires that the corner regions must be small enough
compared with the wavelength that the quasistatic assumptions
used to derive the equivalent network constants L and C are
justified. Given that we observe that A =1, this must always be
so.

The other is that the corners are far enough apart so that each
can be considered isolated from the others. Essentially this means
that a, the length of each of the parallel-plate line segments,
should not become much less than comparable with the sep-
aration of the plates [5]. The greatest value of s for which the
solution is likely to be accurate is s =1+ 2tan«/n. For a square
coaxial line (n = 4), this would give s =3 and for an air-filled
square coaxial line where s = 3.5, Z, = 700 [6]. It is reasonable
to conclude that, for this case, the method is valid for almost all
lines likely to be of any practical significance.

In Fig. 5 are shown results computed by this method for n =3,
4, and 5. The slashes indicate the maximum values of s for which
the theory would ordinarily be believed to be good. The crosses
are sample values from Gruner’s numerical solution for the
square coaxial line, and are to be compared with our curve for
n = 4. Agreement is seen to be very good well beyond the range
in which the theory is expected to hold. The curve labelled
n=oc0, the circular coaxial line, is included for comparison,
although the present theory is not applicable to it.

III.

This technique can be applied to more general cases, such as a
line consisting of a rectangle within a rectangle. Even concentric-
ity is not required; all that is needed is that the cross section be
made up of sections of parallel-plate line joined by mitred
elbows. In this more general case, simplications which result from
symmetry are, of course, no longer available. Equation (1) needs
to be used to determine resonance and a large number of differ-
ent matrices will have to be multiplied to determine 4, D.

Determination of L and C for each corner could still be
undertaken quasistatically on the assumption of isolated corners.
In the more general case for L this is easy [7], but for C resorting
to some numerical technique such as finite differences would be
needed [5]. Valid application of the method continues to rest on
having a cross section with small, well-isolated corners.

It may be true though that-—unless one enjoys advantages such
as the ready availability of a software package for handling
finite-difference solutions of Laplace’s equation—for these more
general cases, if a precise answer is required the cross-sectional

GENERALIZATION OF THE METHOD

resonance technique begins to lose its advantage over a purely
numerical solution. On the other hand, if a bound on the answer
is all that is required, this method would indicate that a good
opening approximation is simply to assume that the cutoff wave-
length equates to the mean line circumference.

IV. CONCLUSIONS

A theoretical development has been given which allows ap-
proximate determination of the cutoff wavelength of the first
higher order mode in any transmission line consisting of a pair of
coaxial, similar, similarly oriented regular polygons. Comparison
for the case of a square coaxial line with results obtained by a
purely numerical method indicates that agreement within a few
percent is to be expected for all lines having characteristic imped-
ances likely to be of practical interest. Moreover, even without
solving the transcendental equation which this approach pro-
duces, it is possible to put bounds on the normalized cutoff
wavelength of the first higher order mode. If the problem is
simply to avoid exciting it, this alone may be enough. It has also
been shown that this method is capable of handling more general
problems that do not exhibit a high degree of symmetry.
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An Explicit Six-Port Calibration Method using Five
Standards

J. D. HUNTER, SENIOR MEMBER, IEEE, AND
P. I. SOMLO, SENIOR MEMBER, IEEE

Abstract —A six-port reflectometer calibration method using five stan-
dards is developed, and gives explicit unambiguous expressions for the
calibration constants. The standards are restricted only in that their
impedances may neither all have the same magnitude nor all have the same
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