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Higher Order Mode Cutoff in Polygonal
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Abstract —This paper provides an analytical solution to the problem of

determining the cntoff wavelength of the first higher order mode in any

transmission line having as its conductors a pair of coaxial, similar,

similarly oriented regular polygons. The method is based on the cross-sec-

tional resonance technique. It is shown that, nnder certain circumstances,

the requirement that the polygons be emxial can be relaxed and a solution

still obtained in this way.

I. INTRODUCTION

In a recent paper, Gruner [1] has given the results of a

numerical solution to the problem of determining cutoff wave-

lengths of the higher order modes in a square coaxial line. Gruner

gives data for the first several higher order modes in graphical

form.

From an engineering point of view, interest lies almost solely in

ensuring that operation of tie line is monomodal, i.e., only the

dominant TEM mode propagates. Clearly hen, most concern lies

witi determining the cutoff wavelength of the first higher order

mode. Modes higher than this will generally be of little more than

academic interest.

This note shows that cutoff of this mode can be determined by

the cross-sectional resonance technique [2, p. 227]. The solution is

analytic, except that the transcendental equation which finally

determines the cutoff wavelength is best solved numerically. In

the latter stages of deriving this equation, some approximation is

involved but this is scarcely any disadvantage as extremely “pre-

cise knowledge of the cutoff wavelength is not necessary if the

aim is really with an adequate margin of safety to avoid the onset

of higher order modes,

It will emerge that this technique is quite general. It is applica-

ble to any transmission line made up of a pq.ir of conductors

which are coaxial, similar, similarly oriented regular polygons, of

which a square coaxial line is but a special case. How the method

might be used in yet more general cases will also be indicated.

II. lXEORETICAL DEVELOPMENT

Consider the transmission line shown in cross section in Fig. 1.

Although the figure shows a square coaxial line, the method

applies to any line consisting of a pair of coaxial, similar,

similarly oriented regular polygons.

To determine the cutoff wavelength of the first higher order

mode, we need to know the conditions under which the cross

section will go into resonance. We can regard the structure as a

cascade of parallel-plate transmission lines joined by mitred

bends and bent around to close on itself. Resonance can be

determined by choosing a reference plane anywhere in one of the

parallel-plate lines (or along the bisector of a bend), but the

procedure is simplest if we choose the reference plane in one of

the lines at its intersection with one of the principal axes of

cross-sectional symmetry, such as AA in Fig. 1.
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Fig. 1. Coaxial transmission line of a squnre cross section. At resonance,

admittance M zero at rt!fe~ence plane AA. ‘
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Fig. 2. J?quivalent circuit for transmission around the structure of Fig. 1.

Consider unit axial length of the line. The condition for

resonance is that the admittance presented at AA should be zero.

Fig. 2 shows an equivalent circuit representation for the system,

the “black box” representing the entire cascade of lines and

bends. Using a transmission (ABCD) matrix representation [2, p.

85] of the cascade, it is easy to show that resonance corresponds

to

A+ D=2. (1)

Since AA is chosen to be on one of the axes of symmetry, A = D

and (1) simplifies to

A=l. (2)

For n-sided polygons, the black box consists of a cascade of n

identical subnetworks, each containing one corner. Fig. 3(a)

shows one of these subnetworks for the case of a square coaxial

line. It consists of two parallel-plate lines of length a/2 joined by

a corner region. In any other case, the network will be similar

except that the angle of the mitre will no longer be r/2 but

2w-/n. The transmission matrix [7’] of the cascade will be

[T]=[t]” (3)

where

(4)

is the transmission matrix of one of the subnetworks. It is easily

shown, e.g., by the Cayley–Hatnilton theorem [3, p. 1097], that

A = COS{ n(cos:%)} (5)
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Fig. 4. F.quivalent circuit for Fig. 3(b).
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mode cutoff. All that is required to solve this equation are values

for the parameters ZO, L, and C.

Analytic expressions from which they can be obtained are

given in the WaveWide Handbook [4]. The normalized suscep-

tances of the series and shunt elements of the II equivalent

circuit of an 13-plane bend in a parallel-plate line will be the same

as those for an ~-plane bend in a rectangular waveguide [2, p.

347–348], i.e. results for ZOCQ and 20 /Lu are directly avail-

able.

To apply this data to this problem, it is useful to rework it in

terms of the mean line circumference

(b)

Fig. 3. (a) One of the n bends which constitute the structure of Fv+. 1. (b)

One of the two halves of the bend.

and so the condition for cross-sectional resonance is that

291
a=cos —.

n
(6) ~ =n(a+b)

m 2
(lo)

Moreover, as Fig. 3 shows, each of these subnetworks is

symmetrical about the bisector of the mitre. It is a cascade of two

identical, asymmetric networks connected back-to-back and it is

simple to show that

a= 2a&l (7)

()

all.
where [I- ] =

Y~
1s the transmission matrix of the network

shown in Fig. 3(b), a section of transmission line followed by a

half corner. Combining (6) and (7) then allows us to deduce that

the condition for resonance must be

@ = COS2z
n’

(8)

Equation (8) is accurate, but to proceed further requires ap-

proximation. We will assume that if the bend region is suffi-

ciently small-exactly what this means is a question that can be

deferred temporarily-it can be replaced by a II network of

series inductance and shunt capacity, i.e., we are assuming that

Fig. 3(b) can be represented circuitally by the equivalent network

shown in Fig. 4. L is the total inductance of the complete comer

region and c is the capacitance.

The transmission matrix [r] for this cascade is easily found by

multiplication of the transmission matrices of each subnetwork in

the cascade. When the result is inserted into (8), the condition for

cross-sectional resonance becomes

and the flat width ratio

b~=—.
a

(11)

After some amount of not very interesting geometry, we obtain

4( s – l)xn
Zocu =

n2A(s+l)tan~
(12)

Lo= 2Tr(s-1)

Z. nA(s+l)
(13)

where A = A /C~ is the normalized wavelength, and

When these results are substituted into (9), we obtain an

equation for the normalized cutoff wavelength as a function of s

with n as a parameter as follows:

2

(

27r ~_ 2(s–l)2n tm 2?7

Cos n(s+l)AC n2AC(s+l)tan~ n(s+l)AC
)

(?+ 1 +
cos-~ l——zccJtal —

20 2 )

[

2W(S–1)22.
. l–

?7(s -1) 2%’—

n3A~(s + l)2tan ; nAC(s+l) ‘ann(s+l)AC
){( ) }. l–:LCti2 –~;tan; –COS2 :=() (9)

o

–COS2:. = o. (14)where C(L) is the total capacitance (inductance) attributable to

the mitre region,

+ =~>

= 2Trf ,

~ is the frequency, and

A is the wavelength corresponding to f.

The solution of (9) gives the condition for the first higher order

Obviously, this is best solved numerically. Examination of this

equation shows that 2/(s +1) < A ~ <1, i.e., the cutoff wave-

length is always less than the mean circumference, except for the

trivial case s =1, where they are equal.

One is entitled to ask, of course, the conditions under which

the approximations involved in deriving (14) will be fulfilled.

There are two conditions.
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Fig. 5. Normalized cutoff wavelength as fnnction of flat-width ratio. Slashes

indicate maximnm values of ~ for which theory is expected to be valid.

Curve n = m is circular case. Crosses are Gruner’s results [1] for n =4.

The first requires that the comer regions must be small enough

compared with the wavelength that the quasistatic assumptions

used to derive the equivalent network constants L and C are

justified. Given that we observe that AC= 1, this must always be

so.

The other is that the comers are far enough apart so that each

can be considered isolated from the others. Essentially this means

that a, the length of each of the parallel-plate line segments,

should not become much less than comparable with the sep-

aration of the plates [5]. The greatest value of s for which the

solution is likely to be accurate is s = 1 + 2 tan n/ n. For a square

coaxial line ( n = 4), this would give s = 3 and for an air-filled

square coaxial line where s = 3.5, ZO = 70S2 [6]. It is reasonable

to conclude that, for this case, the method is valid for almost all

lines likely to be of any practical significance.

In Fig. 5 are shown results computed by this method for n =3,

4, and 5. The slashes indicate the maximum values of s for which

the theory would ordinady be believed to be good. The crosses

are sample values from Gmner’s numerical solution for the

square coaxial line, and are to be compared with our curve for

n = 4. Agreement is seen to be very good well beyond the range

in which the theory is expected to hold. The curve labelled

n = ea, the circular coaxial line, is included for comparison,

although the present theory is not applicable to it.

III. GENERALIZATION OF THE METHOD

This technique can be applied to more general cases, such as a

line consisting of a rectangle within a rectangle. Even concentric-

ity is not required; all that is needed is that the cross section be

made up of sections of parallel-plate line joined by mitred

elbows. In this more general case, simplications which result from

symmetry are, of course, no longer available. Equation (1) needs

to be used to determine resonance and a large number of differ-

ent matrices will have to be multiplied to determine A, D.

Determination of L and C for each comer could still be

undertaken quasistatically on the assumption of isolated corners.

In the more general case for L this is easy [7], but for C resorting

to some numerical technique such as finite differences would be

needed [5]. Valid application of the method continues to rest on

having a cross section with small, well-isolated corners.

It maybe true though that-unless one enjoys advantages such

as the ready availability of a software package for handling

finite-difference solutions of Laplace’s equation-for these more

general cases, if a precise answer is required the cross-sectional

resonance technique begins to lose its advantage over a purely

numerical solution. On the other hand, if a bound on the answer

is all that is required, this method would indicate that a good

opening approximation is simply to assume that the cutoff wave-

length equates to the mean line circumference.

IV. CONCLUSIONS

A theoretical development has been given which allows ap-

proximate determination of the cutoff wavelength of the first

higher order mode in any transmission line consisting of a pair of

coaxial, similar, similarly oriented regular polygons. Comparison

for the case of a square coaxial line with results obtained by a

purely numerical method indicates that agreement within a few

percent is to be expected for all lines having characteristic imped-

ances likely to be of practical interest. Moreover, even without

solving the transcendental equation which this approach pro-

duces, it is possible to put bounds on the normalized cutoff

wavelength of the first higher order mode. If the problem is

simply to avoid exciting it, this alone may be enough. It has also

been shown that this method is capable of handling more general

problems that do not exhibit a high degree of symmetry.
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An Explicit Six-Port Calibration Method using Five

Standards

J. D. HUNTER, SENIOR MEMBER, IEEE, AND

P. I. SOMLO, SENIOR MEM8ER, IEEE

Abstract —A six-port reflectometer calibration method using five stan-

dards is developed, and gives explicit unambiguous expressions for the

calibration constants. The standards are restricted only in that their

impedances may neither all have the same magnitude nor afl have the smne
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